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Abstract: Virtual screening is a knowledge driven approach. Therefore, synergies between different virtual screening 

methods using information about the drug target as well as about known ligands in combination promise the best results. 

Finding novel active scaffolds is often a more important success criterion than hit rates of virtual screens. Novelty should 

also be considered in balance with often weaker activities of virtual screening hits. Virtual screening is most effective if 

performed in iterations following up on weak primary hits of interest through testing of structural analogs and additional 

synthesis of compounds. 
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INTRODUCTION 

 Virtual screening (VS) can be viewed as in silico equiva-
lent to high throughput screening (HTS) [1]. It is a knowl-
edge driven compound database searching approach that 
attempts to find novel compounds and chemotypes as alter-
natives to existing ligands [2] or sometimes to make first 
inroads into finding ligands for previously unexplored puta-
tive drug targets for which crystal structures, solution struc-
tures, or high confidence homology models are available [3]. 
VS is usually described as a cascade of filter approaches to 
narrow down a set of compounds to be tested for biological 
activity against the intended drug target [4,5]. Depending on 
the intended follow-up (testing of available compounds or 
synthesis of VS hits before testing) databases for VS contain 
between up to ~10 million available compounds and any 
number of virtual compounds the VS approach can handle 
(10

12
 compounds is often the limit). Starting with a fast 

evaluation of the drug-likeness of compounds [6], VS is of-
ten followed by ligand-based approaches including 2D and 
3D similarity to known active molecules including 2D and 
3D pharmacophore approaches and subsequent structure-
based screening using docking and scoring approaches [7] if 
the target structure is available. The merits of ligand-based 
VS (LBVS) [8,9] and structure-based VS (SBVS) [10-12] 
approaches have been discussed in the literature independ-
ently for a long time. In the past researchers have sometimes 
assumed that SBVS as the computationally more expensive 
technique is also more powerful in finding novel active 
molecules compared to LBVS approaches. Therefore, LBVS 
approaches have been attempted less often if SBVS tech-
niques have been available and have looked promising. This 
perception has been challenged now. Quantitative compari-
sons have been published in recent years illustrating that in 
many cases LBVS is as powerful or sometimes even outper-
forms SBVS approaches across a series of different drug  
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targets [8,13-15] while in other cases SBVS is still superior 
[16].  

 The main goal of VS approaches is to find new actives of 
novel chemical structure. While for LBVS approaches the 
ability to ‘scaffold hop’ (finding new hits of novel chemo-
type) has always been in the center of the studies, finding 
new chemotypes in SBVS campaigns has often been taken 
for granted. This may be the reason that only very limited 
studies have been published on this topic [17]. Reviewing 
published VS results in the context of comparing LBVS and 
SBVS methods identifies the need to quantify scaffold hop-
ping capabilities of docking approaches. Overall, recent stud-
ies comparing LBVS and SBVS approaches, especially in 
the context of scaffold hopping, show that the knowledge of 
active small molecules is as useful as and sometimes even 
more useful than the knowledge of the structure of the target 
protein at atomic resolution [8,15]. However, another impor-
tant observation comparing LBVS and SBVS approaches is 
that both methods identify different sets of novel actives. 
This finding suggests that LBVS and SBVS should not be 
used in cascade but rather in parallel complementing each 
other in the hunt for new hits.  

VIRTUAL SCREENING AS SCAFFOLD HOPPING 

TOOL 

 Similarity approaches have been used for a long time to 
find new biologically active compounds based on their simi-
larity to known ligands [18]. Focusing on compounds with 
high similarity to known actives it has been found that there 
is only a 30% chance that compounds with high topological 
similarity measured by a Tanimoto coefficient of more than 
0.85 using Daylight fingerprints as descriptors are active also 
against the same drug target [19]. These compounds are 
structurally very similar to active template molecules. On the 
other hand, there are examples of identifying novel actives 
based on compounds that are topologically quite dissimilar 
to the template ligands, a task that is obviously far more 
challenging. An example is the identification of a 15-LO 
inhibitor through 3D pharmacophore fingerprint similarity-
based virtual screening (Fig. 1) [20]. Although the Tanimoto 
similarity between the template molecule 1 and the VS hit 2



928    Mini-Reviews in Medicinal Chemistry, 2008, Vol. 8, No. 9 Ingo Muegge 

using Daylight fingerprints is only 0.41 (Scitegic fingerprint 
FCFP4 descriptor similarity is only 0.33) the compounds 
appear to be equally potent. How can this be? For a virtual 
screen in which active compounds of any scaffold type exist 
in the database of molecules subjected to the screen, it is not 
the question, how closely related these compounds are to the 
known actives but rather if they are significantly more simi-
lar to the actives than to all other inactive compounds in the 
data set screened. The task at hand is to find a relevant de-
scriptor that associates such higher similarity scores with 
unknown actives thereby separating them from the majority 
of inactive compounds subjected to the virtual screen. In 
other words, the similarity to known actives can be low as 
long as the similarities of other inactive compounds are even 
lower. Obviously, there has to be a threshold for minimum 
similarity below which noise takes over. However, this 
threshold is far lower than the Tanimoto similarity of 0.85 
using Daylight fingerprints cited above. On the other hand, 
the 15-LO example (Fig. 1) also illustrates that VS hits based 
on low similarity are sometimes obtained serendipitously. 
The similarity between the 2 very different compounds 1 and 
2 (template and VS hit) is most likely driven by the common 
indole substructure. Inspecting probable binding modes of 
compounds 1 and 2 in a high confidence homology model 
(data not shown) reveals, however, that it is unlikely that the 
indole moieties are placed similarly in the 15-LO binding 
pocket suggesting that the successful activity prediction of 2
based on similarity to 1 may have been all for the wrong 
reasons. This example illustrates that while VS hits are cer-

tainly welcome by a drug discovery team, a careful evalua-
tion of the underlying computational approach is neverthe-
less warranted to draw more general conclusions about the 
merit of a particular VS approach. 

 There are generally some sets of descriptors that tend to 
be better suited to find actives of novel scaffolds than others. 
Ultimately, for a given target, however, it is necessary to test 
several descriptors using sets of known actives as templates 
to determine the optimal combination of descriptors to be 
applied. Ideally one can combine ligand-based descriptors 
with structure-based descriptors as they often tend to be or-
thogonal to each other. Here are some observations on the 
ability of different descriptors to scaffold hop. In a study of 
seven drug targets for which crystal structures are available 
in the literature as well as a selection of known ligands of 
different chemical classes is known, the ability of several 
descriptors to scaffold hop has been analyzed. Fig. 2 shows 
how atom pair descriptors (AP), 3D pharmacophore finger-
prints (P50), and Scitegic fingerprints (ECFP4) perform in 
retrieving known actives of different chemotypes from data-
bases of decoys. As described in detail elsewhere [15] AP 
and pharmacophore fingerprint methods are able to facilitate 
scaffold hopping well. Recently, we have found that Scitegic 
fingerprints (ECFP and FCFP) are also very strong in finding 
new chemotypes through virtual screening (data not shown). 
Especially in case of estrogen receptor and thrombin ligands, 
Scitegic fingerprints have performed very well in hopping 
from one ligand chemotype to another. 

CONSIDERATIONS OF DATABASES TO BE 
SCREENED 

 Depending on whether the database of compounds de-
ployed for VS experiments contains actives that are topo-
logically related to the query compounds - perhaps through 
similar positioning of pharmacophore-bearing functional 
groups on side chains that are not part of the scaffold - the 
choice of optimal descriptors need be different. In cases 
where similarity to known actives can be established through 
non-scaffold related topological similarities, topological de-
scriptors such as Daylight fingerprints, AP, or Scitegic fin-
gerprints, and many other topology-dependent approaches 
perform very well. This is often the case when recall experi-
ments using literature compounds are designed pooling 
known actives from different scaffold types with a database 
of inactives. Because there is often correlation among the 
active molecules through historic dependencies of their dis-
coveries, scaffold hopping seems often easier to be accom-
plished. Fig. (2) shows examples where such bias exists. For 
the drug targets HIV-1 protease, p38 kinase, thrombin, and 
estrogen receptor, known actives of different scaffolds have 
been mixed with perceived inactive drug-like molecules 
from the MDDR database and then recalled using different 
descriptors as basis for similarity assessments. As one can 
see from the figure, topological fingerprints perform well in 
this exercise of scaffold hopping. Scitegic fingerprints per-
form particularly well. However, in cases where such topo-
logical bias does not exist, such as for the CDK2 case, topo-
logical fingerprints have a much harder time to compete with 
other descriptors such as 3D pharmacophore fingerprints or 
docking methods that depend much less on topological simi-
larities [15]. 

Fig. (1). Discovery of a 15-LO inhibitor through virtual screening 

using a 3D pharmacophore fingerprint similarity technique [20]. 
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 It is important for each similarity-based VS to assess 
whether the chances of finding structurally related com-
pounds (for instance through common pharmacophore-
bearing side chain similarity) are high or low. If chances are 
high, topological descriptors, especially Scitegic fingerprints, 
will perform well in finding compounds with novel scaf-
folds. If the chances are low, pharmacophoric descriptors 
may be an alternative. A more relevant assessment of the 
power of different descriptors should be obtained from the 
analysis of HTS data. VS recall assessments are often less 
relevant because of the built-in correlation within historic 
data sets. Compounds in the MDDR database, for instance, 
with activities against the same target, are often the result of 
literature-to-lead approaches and structurally very similar to 
each other. Such high compound similarities are often un-
likely to be found in unbiased screening collections. It 
should also be mentioned that the success of virtual screen-
ing experiments depends critically on the inactive com-
pounds in the database screened against [21,22]. The occur-
rence of false positives (inactive compounds predicted as 
active) is one of the main problems in VS and is obviously 
very dependent on ‘what else’ is in the database to be 
screened.  

COMPARING STRUCTURE-BASED AND LIGAND-

BASED VIRTUAL SCREENING APPROACHES 

 Recently, several reports of direct comparisons of struc-
ture-based and ligand-based virtual screening approaches 
have been reported in the literature. Evers et al. have com-
pared molecular docking into GPCR homology models with 
ligand-based pharmacophore models, Feature Tree models 
[23], statistical methods including partial least square (PLS) 
and PLS discriminant analysis based on 2D descriptors [24]. 
Four aminergic GPCRs (Alpha1A, 5HT2a, D2, and M1) 
with a variety of ligands of different chemotype have been 
used in a virtual screening recall study. While homology 
models, especially for GPCRs, generally introduce an addi-

tional uncertainty into structure-based virtual screening stud-
ies [25,26], the authors have validated at least one of the 
models (Alpha1A) through experimentally testing structure-
based virtual screening hits finding 37 novel antagonists 
[27]. The authors have carefully selected a set of 42-48 
unique chemotypes among 50 active ligands chosen for each 
receptor combined with 950 inactives from the MDDR that 
are purged of biogenic amine binding moiety containing 
compounds. For the described setup, the ligand-based meth-
ods have yielded remarkable enrichment rates among the 
recalled actives in a virtual screen. Particularly the Feature 
Tree and PLS approaches have performed well. Structure-
based approaches (GOLD docking [28] and FlexX docking 
[29]) have performed less well; however, they still provide 
satisfying enrichment rates (up to 60% of actives found in 
the top 1% of the screened database). The authors stress the 
point that “the chance of being successful in virtual screen-
ing increases if different virtual screening approaches are 
employed in parallel or in combination with each other”.  

 In our own work we have also compared structure-based 
and ligand-based VS methods [15]. As shown in Fig. (2), 
ligand-based virtual screening performs sometimes better 
than molecular docking (here using Glide [30]). While this 
finding may be surprising at first it may again be a reflection 
of the strong topological bias included in the particular recall 
data sets used that have resulted in a particularly strong per-
formance of topological descriptors. On the other hand it 
also points towards opportunities in combining the different 
approaches to increase the predictive power of VS.  

SYNERGIES BETWEEN STRUCTURE-BASED AND 

LIGAND-BASED METHODS 

 Similar to the work of Evers and coworkers described 
above, Bissantz et al. [14] have compared virtual screening 
performances of different ligand-based methods (Feature 
Trees, Phacir, Daylight) applied to GPCR homology models 

Fig. (2). Comparison of percent actives retrieved in the top ranking 2, 5, and 10% of a database in a recall experiment involving seven pro-

tein targets (CDK2, COX2, estrogen receptor, HIV-1 protease, neuraminidase, p38 MAP kinase, and thrombin [15]. The suffix _G refers 

toGlide2.5 docking experiments. _P50 and _AP refer to ligand-similarity VS methods using 3D pharmacophore fingerprints with 50 confor-

mations per molecule and to atom pair descriptors, respectively. _ECFP4 refers to Scitegic fingerprints. Between 4 and 13 active ligands are 

involved per target paired with 9969 putative decoys from the MDDR database [39]. 



930    Mini-Reviews in Medicinal Chemistry, 2008, Vol. 8, No. 9 Ingo Muegge 

with docking and scoring (FRED, FlexX). Four different 
5HT2c agonist structures of different chemotype have been 
used (Fig. 3) in a recall study involving 207 active molecules 
(40% functional activity) among a set of 9,955 compounds 
selected to have a higher chance of being aminergic GPRC 
ligands. In contrast to the decoy set used by Evers at al. that 
does not contain any potential biogenic amines, the decoy set 
Bissantz et al. use possesses exactly one basic amine moiety, 
at least one aromatic ring, no negative charge, and each 
molecule has a molecular weight of less than 400 Da. Not 
surprisingly and in stark contrast to the work by Evers at al., 
the hit rates obtained with all approaches are not particularly 
high because of the functional similarity of the compounds 
although diversity criteria have been applied to choose the 
final selection of compounds to screen against. Despite the 
differences in the works of Evers and Bissantz the most in-
teresting observation of the Bissantz paper is again the com-
plementarities of the actives found with different approaches. 
On average the overlap between a particular ligand based 
approach (using one of the 4 reference ligands as templates) 
and a structure-based approach (FlexX or FRED docking 
with different scoring functions) is only about one third 
while the majority of the hits are either identified by the 
ligand-based or structure-based approaches. Also noteworthy 
is the finding that while the hit rate has been often higher for 
ligand-based approaches, the diversity of hits and the stabil-
ity of the hit rate independent of the virtual screening proto-
col has been higher for the structure-based approach. 

Fig. (3). 5HT2c agonists used in a VS study by Bissantz et al. [14].

 There are developments to combine SBVS and LBVS 
approaches in software solutions. While developed for im-
proving docking mode predictions, the SDOCKER concept 
[31] of combining ligand similarity as additional force in 
docking experiments can be used for VS applications also. 
Commercially available docking programs such as Glide also 
allow for compound similarity to be considered in molecular 
docking [30].  

USING LIGAND-BASED AND STRUCTURE-BASED 
METHODS IN CONCERT 

 The concept of using different virtual screening ap-
proaches in concert is an obvious choice. More researchers 
try to incorporate multiple VS screening methods as part of a 

comprehensive VS strategy. Table 1 provides an overview of 
some of the work that has been reported in the literature in 
recent years. The selection shown in the table is not exhaus-
tive, of course. It has been assembled to merely illustrate the 
variety of approaches and target classes pursued with syner-
getic VS concepts to date. Combinations of docking ap-
proaches, pharmacophore screening, shape, similarity, 2D 
and 3D similarity, clustering methods, QSAR, and machine 
learning methods are prevailing in several publications aim-
ing at increasing the effectiveness of VS. A few of these ef-
forts are briefly described below. 

 A recent example of how VS methods can be combined 
successfully has been reported by Hu and coworkers [32]. 
The first Yersinia Protein Kinase A (YpkA) inhibitors with 
activities in the single digit M range have been reported 
through the combination of support vector machines (SVM) 
and ensemble docking using a multitude of homology mod-
els. Fig. (4) illustrates the conceptual setup of the VS. First, a 
2 million compound database has been filtered down 10-fold 
using a general kinase inhibitor trained SVM approach. Then 
the surviving compounds have been docked followed by 
consensus scoring against multiple YpkA homology models. 

 A surprising number of recent successes in VS have been 
reported using homology modeling for GPCRs. While there 
are examples in which different ligand-based techniques 
used in concert have allowed for synergies to be gained all 
three GPCR examples in Table 1 used docking techniques 
against GPCR homology models as part of a VS strategy in 
one form or another. An example of finding potent antago-
nists against melanin-concentrating hormone (MCH) 1R 
receptor has been described by Clark et al. [33]. Substructure 
searching, 2D and 3D similarity searching have been used in 
concert and have been followed by manual docking into a 
bovine rhodopsin-derived homology model. Similarly, suc-
cesses have been reported combining similarity and homol-
ogy model docking methods for GPR30 [34] and CCR5 [35].  

 An interesting example of how different VS methods can 
yield different complementary hit sets is given by Pirard et
al. [16]. A protein-based pharmacophore model has been 
derived based on homology models of the potassium channel 
Kv1.5. VS using this model has yielded 19 potent inhibitors 
from five distinct chemical classes. In comparison, inde-
pendent 2D similarity searches using UNITY fingerprints 
have yielded two hits from two classes and an unrelated 3D 
ligand-based pharmacophore searching VS approach has 
provided one hit. While for the potassium channel virtual 
screen the protein-derived method has worked best it is par-
ticularly noteworthy that there has been no overlap observed 
between the hits or chemical classes found with the three 
individual methods mentioned above. This is an excellent 
example of how different methods - in this case protein and 
ligand-based 3D pharmacophore methods and a 2D similar-
ity approach) - are able to provide complementing hits that 
would otherwise have possibly been ignored. 

CONSENSUS SCORING IN VIRTUAL SCREENING 

 Particularly in SBVS the use of unreliable scoring func-
tions has been cited as main reason for less robust VS re-
sults. Attempts have been made to overcome this problem 
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using consensus scoring approaches [36]. Most consensus 
approaches use an average principle of multiple scoring 
functions. However, recently, some more sophisticated 
methods have been used ranging from clustering ideas [15] 
to supervised learning methods [37]. Learning methods may 
be a good choice if the performance of multiple individual 
screening functions is uneven. In other words, simple com-
binatorial approaches work only satisfactorily if all scoring 
functions are equally predictive. If a well performing scoring 
function is combined with underperforming scoring func-
tions consensus scoring without learning will not improve 
results beyond the predictive power of the best scoring func-
tion. We have seen this behavior for instance in case of 
LBVS combining different similarity descriptors and have 

found only one case in which clustering-inspired consensus 
scoring improved results beyond those obtained with the best 
individual method [15]. However, generally, an averaging 
effect is observed through the use of consensus scoring and 
may be preferred even in cases that scoring functions per-
form quite differently because for a given virtual screen it 
may be unknown which scoring function performs better 
than others. This observation holds true for both SBVS and 
LBVS methods.  

WEAK HITS – WHAT TO DO WITH IT? 

 A common observation in VS experiments is the finding 
of rather weak hits in the M range (often double digit) [38]. 
Especially for advanced projects looking for novel starting 

Table 1. Targets Pursued using Multiple Virtual Screening Strategies in Synergy 

Target Class Target VS Approaches Used Outcome Reference 

kinases YpkA 
machine learning and multiple 

conformational virtual screening 

first reported single 

digit M inhibitors 
Hu et al., 2007 [32] 

 EphB2 
docking and scoring, pharma-

cophore searching 
M inhibitors

Toledo-Sherman et al.,

2005 [40] 

G-protein-coupled receptors MCH-1R 

2D,3D similarity, substructure 

searching, manual docking, cluster-

ing 

55nM hit with an-

tagonistic properties 
Clark et al., 2004 [33] 

 GPR30 
2D similarity, pharmacophore and 

shape-based similarity, docking 

first GPR30-specific 

agonist 
Bologa et al., 2006 [34] 

 CCR5 
2D pharmacophore similarity, 

docking, clustering 

agonist found that 

promotes receptor 

internalization 

Kellenberger et al.,

2007 [35] 

proteases SARS protease eHITS docking, 2D similarity testing of hits ongoing 
Plewczynski et al., 2007 

[41] 

 SARS protease 
docking, 3D-QSAR, pharmacopho-

re 
25 inhibitors >3 M Tsai et al., 2006 [42] 

ion channels Kv1.5 
protein-derived pharmacophores, 

FeatureTrees, 2D-similarity 

5 inhibitor classes 

<10 M
Pirard et al., 2005 [16] 

nuclear receptors PPARg 
shape similarity, docking, analog 

searching 
novel PPAR  agonists Lu et al., 2006 [43] 

other enzymes chorismate mutase 
ligand-based pharmacophore mod-

els, docking 
6 M inhibitors 

Agrawal et al., 2007 

[44] 

 DPPIV pharmacophore searching, docking 51 inhibitors found Ward et al., 2005 [45] 

 COX-2 
machine learning, pharmacophore 

descriptor 
new inhibitors found Franke et al., 2005 [46] 

protein-RNA interactions HIV-1 reverse transcriptase 3D-QSAR, docking 
2 potent inhibitors 

from SPECS 
Zhang et al., 2006 [47] 

transporters SHGB 2D-QSAR, docking ligands found 
Cherkasov et al., 2005 

[48] 

others HRV coat protein 
structure-based pharmacophore 

model, docking, PCA 

6 structures with 

antirhinoviral activity 
Steindl et al., 2005 [49] 
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points for back-up series these hits often appear less attrac-
tive. However, even weak VS hits are often complementary 
to HTS hits and structurally different. Because VS is not an 
exact science weak hits with interesting structure should be 
seen as door openers to a potentially new world of chemicals 
that could be relevant to the target at hand rather than the 
ultimate set of best compounds available. Both false nega-
tives (active compounds predicted to be inactive) and false 
positives cloud the picture of VS results. Therefore, VS ex-
periments need to be done in iterations. At the least hits 
should be followed up with the testing of available analogs. 
Even better is a synthetic exploration of hits that sometimes 
can be most effectively achieved using combinatorial chem-
istry. In many cases analog testing improves potencies sig-
nificantly. 

SUMMARY

 Using multiple approaches in concert is now a common 
strategy in virtual screening. Interestingly, combining LBVS 
and SBVS is often practiced in cases of low confidence in 
the target structure, most notably for GPCRs where homol-
ogy models have been reported to be used in VS combined 
with different compound similarity approaches. While the 
desire for GPCR targets to use multiple methods is most 
likely driven by the need to use all the information one can 
get in an often information-poor environment, the strategy of 
combining structure-based and ligand-based approaches 
should be generally adopted to realize maximum VS poten-
tial even if target crystal structures are available.  

 Pursuing virtual screening results needs a sustained 
commitment for testing follow-up compounds. Primary re-
sults often only open first doors by providing weak hits. VS 
works best in iterations learning from and following-up on 
first round results. While this is common practice for VS in 
an industrial setting, specific reports on such iterative VS 
setups in the literature are still sparse. While synergies be-
tween different virtual screening methods are more often 
realized there is a need to embed VS better in the drug dis-
covery process and realize synergies with other drug discov-
ery functions, especially with biomolecular screening and 
medicinal and combinatorial chemistry. 
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